Preparation of Magnetic Nanoparticles via a Chemically Induced Transition: Role of Treating Solution’s Temperature
نویسندگان
چکیده
Using FeOOH/Mg(OH)₂ as precursor and FeCl₂ as the treating solution, we prepared γ-Fe₂O₃ based nanoparticles. The FeCl₂ treating solution catalyzes the chemical reactions, dismutation and oxygenation, leading to the formation of products FeCl₃ and Fe₂O₃, respectively. The treating solution (FeCl₂) accelerates dehydration of the FeOOH compound in the precursor and transforms it into the initial seed crystallite γ-Fe₂O₃. Fe₂O₃ grows epitaxially on the initial seed crystallite γ-Fe₂O₃. The epitaxial layer has a magnetically silent surface, which does not have any magnetization contribution toward the breaking of crystal symmetry. FeCl₃ would be absorbed to form the FeCl₃·6H₂O surface layer outside the particles to form γ-Fe₂O₃/FeCl₃·6H₂O nanoparticles. When the treating solution's temperature is below 70 °C, the dehydration reaction of FeOOH is incomplete and the as-prepared samples are a mixture of both FeOOH and γ-Fe₂O₃/FeCl₃·6H₂O nanoparticles. As the treating solution's temperature increases from 70 to 90 °C, the contents of both FeCl₃·6H₂O and the epitaxial Fe₂O₃ increased in totality.
منابع مشابه
Preparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications
In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...
متن کاملPreparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications
In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...
متن کاملPreparation and Characterization of Manganese Ferrite Nanoparticles via Co-precipitation Method for Hyperthermia
In this work, Mn ferrite nanopowders were prepared by co-precipitation method and were characterized. Phase identification of the nanopowders was performed by X-ray diffraction method and the mean particle size of the nanopowders was calculated by Scherrer's formula, using necessary corrections. Magnetic parameters of the prepared nanopowders were measured by a vibrating sample magnetome...
متن کامل[Co(NH3)5(NO3)](NO3)2 as an energetic coordination precursor for the preparation of Co3O4 nanoparticles at low temperature
In this paper, an energetic coordination compound namely pentamminenitratocobalt(III) nitrate, [Co(NH3)5(NO3)](NO3)2, was used as a new precursor for the preparation of Co3O4 nanoparticles. The results showed that the complex is easily decomposed into the Co3O4 nanoparticles at low temperature (200 °C) without employing a surfactant or solvent and any complicated equipment. The product was char...
متن کاملHydrothermal Synthesis of Fe3O4 Nanoparticles and Flame Resistance Magnetic Poly styrene Nanocomposite
Fe3O4 nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic and anionic on the morphology of the product was investigated. Magnetic nanoparticles were added to poly styrene for preparation of magnetic nanocomposite. Nanostructures were then characterized using X-ray diffraction, scanning electron microscopy and Fourier transform i...
متن کامل